853,522 research outputs found

    Ph.D. Thesis Proprosal: Transportable Agents

    Get PDF
    One of the paradigms that has been suggested for allowing efficient access to remote resources is transportable agents. A transportable agent is a named program that can migrate from machine to machine in a heterogeneous network. The program chooses when and where to migrate. It can suspend its execution at an arbitrary point, transport to another machine and resume execution on the new machine. Transportable agents have several advantages over the traditional client/server model. Transportable agents consume less network bandwidth and do not require a connection between communicating machines -- this is attractive in all networks and particularly attractive in wireless networks. Transportable agents are a convenient paradigm for distributed computing since they hide the communication channels but not the location of the computation. Transportable agents allow clients and servers to program each other. However transportable agents pose numerous challenges such as security, privacy and efficiency. Existing transportable agent systems do not meet all of these challenges. In addition there has been no formal characterization of the performance of transportable agents. This thesis addresses these weakness. The thesis has two parts -- (1) formally characterize the performance of transportable agents through mathematical analysis and network simulation and (2) implement a complete transportable agent system

    Heterogeneous Self-Reconfiguring Robotics: Ph.D. Thesis Proposal

    Get PDF
    Self-reconfiguring robots are modular systems that can change shape, or reconfigure, to match structure to task. They comprise many small, discrete, often identical modules that connect together and that are minimally actuated. Global shape transformation is achieved by composing local motions. Systems with a single module type, known as homogeneous systems, gain fault tolerance, robustness and low production cost from module interchangeability. However, we are interested in heterogeneous systems, which include multiple types of modules such as those with sensors, batteries or wheels. We believe that heterogeneous systems offer the same benefits as homogeneous systems with the added ability to match not only structure to task, but also capability to task. Although significant results have been achieved in understanding homogeneous systems, research in heterogeneous systems is challenging as key algorithmic issues remain unexplored. We propose in this thesis to investigate questions in four main areas: 1) how to classify heterogeneous systems, 2) how to develop efficient heterogeneous reconfiguration algorithms with desired characteristics, 3) how to characterize the complexity of key algorithmic problems, and 4) how to apply these heterogeneous algorithms to perform useful new tasks in simulation and in the physical world. Our goal is to develop an algorithmic basis for heterogeneous systems. This has theoretical significance in that it addresses a major open problem in the field, and practical significance in providing self-reconfiguring robots with increased capabilities

    The study of efficient causation in history.

    Full text link
    Thesis (Ph.D.)--Boston Universit
    • …
    corecore